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Abstract RGB-D Videq fetch-milk-from-fridge
i\

microwaving
We focus on modeling human activities comprising mul-

tiple actions in a completely unsupervised setting. Our

model learns the high-level action co-occurrence and tem-

poral relations between the actions in the activity video. Segments assigned with Action Topics

We consider the video as a sequence of short-term action

clips, called action-words, and an activity is about a set

of action-topics indicating which actions are present in the ; ‘ ¢ g ] - ol -4 i

video. Then we propose a new probabilistic model relat- \ ; ! B !

ing the action-words and the action-topics. It allows us to i o

model long-range action relations that commonly exist in

the complex activity, which is challenging to capture in the

previous works. Figure 1: Our goal is to automatically segment RGB-D videos
We apply our model to unsupervised action segmentationand assign action-topics to each segment. We propose a com-

and recognition, and also to a novel application that detects pletely unsupervised approach to modeling the human skeleton

forgotten actions, which we call action patching. For evalu- and RGB-D features to actions, as well as the pairwise action co-

ation, we also contribute a new challenging RGB-D activity occurrence and temporal relations. We then show that our model

video dataset recorded by the new Kinect v2, which con-¢an be used to dgtectwhi(;h action people forgot, a new application

tains several human daily activities as compositions of mul- Which we callaction patching

tiple actions interacted with different objects. The extensive

experiments show the effectiveness of our model.

fetch-bowl-from-oven
) put-milk-back-to-fridge

leave

fully labeled actions in videos [23, 20, 131], or weakly su-
pervised action labels [9, 7], or locations of human/their
] interactive objects [21, 35, 25]. Among them, the tempo-
1. Introduction ral structure of actions is often discovered by Markov mod-
We consider modeling human activities containing a se- €ls such as Hidden Markov Model (HMM) [34] and semi-
guence of actions (see an example in Flg. 1), as perceivedVarkov [12,132], or by linear dynamical systems [3], or by
by an RGB-D sensor in home and of ce environments. In hierarchical grammars [27, 37,120, 39, 2], or by other spatio-

the complex human activity suchearming milkinthe ex- ~ temporal representations [15,126, 17] 19]. Most of these
ample, there are not only short-range action relatiert, works are based on RGB features and only model the short-
microwavings often followed byfetch-bowl-from-overbut range relations between actions (see Segfjon 2 for details).
there are also long-range action relatioasy, fetch-milk- Different from these approaches, we consider a com-

from-fridge is strongly related tgout-milk-back-to-fridge  pletely unsupervised setting. The novelty of our approach

even though several other actions occur between them. is the ability to model the long-range action relations in
The challenge that we undertake in this paper is: Canthe temporal sequence, by considering pairwise action co-

an algorithm learn about the aforementioned relations in occurrence and temporal relatioresg, put-milk-back-to-

the activities when just given a completaiplabeledset fridge often co-occurs with and temporally affetch-milk-

of RGB-D videos? from-fridge We also use the more informative human skele-
Most previous works focus on action detection in a su- ton and RGB-D features, which show higher performance

pervised learning setting. In the training, they are given over RGB only features for action recognition [1L8] 42, 22].



In order to capture the rich structure in the activity, we models|[34, 12, 32,/3] are the most popular, which focus on
draw strong parallels with the work done on document mod- modeling the action transitions in the activities. More com-
eling from natural language (e.gl.| [6]). We consider an ac- plex hierarchical relations [27, 8[7, 120,139] or graph rela-
tivity video as a document, which consists of a sequencetions [2] are considered in modeling actions in the complex
of short-term action clips aaction-words And an activity activity. Although they have performed well in different ar-
is about a set ofiction-topicsindicating which actions are  eas, most of them rely on local relations between adjacent
present in the video, such éstch-milk-from-fridgein the clips or actions that ignore the long-term action relations.
warming milkactivity. Action-words are drawn from these There also exist some unsupervised approaches on action
action-topics and has a distribution for each topic. Then we recognition. Yanget al. [43] develop a meaningful repre-
model the following (see Fi] 2): sentation by discovering local motion primitives in an unsu-

« Action co-occurrence.Some actions often co-occur Pervised way, then a HMM is learned over these primitives.
in the same activity. We model the co-occurrence Joneset al. [13] propose an unsupervised dual assignment
by adding correlated topic priors to the occurrence clustering on the dataset recorded from two views.
of action-topics.e.g, fetch-milk-from-fridgeand put- Different from these approaches, we use the richer hu-
milk-back-to-fridgenas strong correlations. man skeleton and RGB-D features rather than the RGB ac-

« Action temporal relationsSome actions often causally tion features([38, 14]. We model the pairwise action co-
follow each other, and actions change over time during 0ccurrence and temporal relations in the whole video, thus
the activity execution. We model the relative time dis- relations are considered globally and completely with the

tributions between every action-topic pair to Capture Uncertainty. We also use the learned relations to infer the
the temporal relations. forgotten actions without any manual annotations.

We rst show that our model is able to learn meaningful rep- Action recognition using human skeletons and RGB'D.
resentations from the unlabeled activity videos. We use thetamera have shown the advantages over RGB videos in
model to temporally segment videos to segments assignedn any works. Skeleton-based .approia’lch ‘focus on propos-
with action-topics. We show that these action-topics are se-"9 good skeletal representatioris I[31.] 83 B6l 42, 22].

mantically meaningful by mapping them to ground-truth ac- Be5|d_e? of tthe hubr_nar: s_keletons, we al_soddetect tthe hu-
tion classes and evaluating the labeling performance. man interactive ObJects In an unsupervised way 1o pro-

We then also show that our model can be used to de-Vide more discriminate features. Object-in-use contextual

; : - o information has been commonly used for recognizing ac-
tect forgotten actions in the activity, a new application that . -
we call action patching We show that the learned co- Flons Ll&".lg-‘ 2h, 39]. MO.St of them depend on correct.ob-
occurrence and temporal relations are very helpful to inferJ|eCt Itra(il_«ng olr l_ocal mﬁ“ﬁn cha;)nges. tThzy_ lost the f:jlglh
the forgotten actions by evaluating the patching accuracy. eve' action relations which can be captured in our modet.
We also provide a new challenging RGB-D activity Our work is also related to the topic models. LOA [6]

video dataset recorded by the new Kinect v2 (see exampleé'vas the rst hierarchical Bayesian topic model and widely

in Fig.[8), in which the human skeletons and the audio are used in qiﬁerent applications. The correlated tOD.iC mod-
also recorded. It contairb8videos of human daily activi- els [4,L1p] add the priors over topics to capture topic corre-

ties as compositions of multiple actions interacted with dif- !at|0ns. A ':;)plc[znoodel(;)\;]er atl))solute t|?16ijs'iamp?_ of words
ferent objects, in which people forget action®R2videos. is proposed in[140] and has been applied to action recog-

They are performed by different subjects in different envi- nition [101.' However, the independence assumption of dif-
ronments with complex backgrounds. ferent topics would lead to non smooth temporal segmen-

In summary, the main contributions of this work are: tations. lefgren.tly, our mOd.eI considers bOth correlations
) ) and the relative time distributions between topics rather than
* Our model is completely unsupervised and non- the ahsolute time, which captures richer information of ac-

parametric, thus being more useful and scalable. tion structures in the complex human activity.
» Our model considers both the short-range and the long- .
3. Overview

range action relations, showing the effectiveness in the
action segmentation and recognition, as well as in a  We outline our approach in this section (see approach pi-
new application action patching. pline in Fig.[2). The input to our system is RGB-D videos
+ We provide a new challenging RGB-D activity dataset with the 3D joints of human skeletons from Kinect v2.
recorded by the new Kinect v2, which contains videos We rst decompose a video into a sequence of overlapping

of multiple actions interacted with different objects. ~ xed-length temporal clips (step (1)). We then extract the
human skeleton features and the human interactive object
2. Related Work features from the clips (introduced in Sectipn.]3.1), which

Most previous works on action recognition are super- show higher performance over RGB only features for action
vised [21]9] 25, 23, 29, 85| [7,124]. Among them, the linear recognition[[18, 42, 22].



Figure 2: The pipeline of our approach. Training (blue arrows) follows steps (1), (2), (3), (4). Testing (red arrows) follows steps (1), (3),

(5). The steps are: (1) Decompose the video into a sequence of overlapping xed-length temporal clips. (2) Learn the action-dictionary
by clustering the clips, where the cluster centers are action-words. (3) Map the clips to the action-words in the action-dictionary to get
the action-word representation of the video. (4) Learn the model from the action-word representations of training videos. (5) Assign
action-words in the video with action-topics using the learned model.

In order to build a compact representation of the action =" e
video, we draw parallels to document modeling in the natu- &
ral language [6] to represent a video as a sequence of words. ‘ri‘
We usek-means to cluster the clips to form attion-
dictionary, where we use the cluster centergaeason-words 3
(step (2)). Then, the video can be represented as a sequendggure 3: Examples of the human skeletons (red line) and the ex-
of action-word indices by mapping its clips to the nearest tracted interactive objects (green mask, left: fridge, right: book).
action-words in the dictionary (step (3)). And an activity .
video is about a set ddction-topicsindicating which ac- 3.1. Visual Features
tions are present in the video. We describe how we extract the visual features of a clip
in this sub-section. We extract both skeleton and object fea-
. . . tures from the output by the Kinect Vi2 [1], which has an im-
tha\:vfnt:sglsbliﬂg amn;;;ﬁgeg\;'i?iée:wggsmtzd?Aésgec%éi)_) proved boc_iy tracker and higher resolqtipn o_f RGB-D frame
topics, as well as the co-occurrence and the temporal re—than the Kinect v1. The skeleton hESJO!ntS n totql._ Let
S X . . Xe=fx§;x5; ;X559 be the 3D coordinates @b joints
lations between the action-topics. Using the learned model, f keleton in the current frame. We rst compute the
we can assign the action-topic to each clip (step (5)), so that0 as f th les b h ’ d PUt h
we can get the action segments, the continuous clips with?osmg © E ©ang es__ etvv_egn t © connec_te parts in eac
the same assigned topic. frame: | = pwa PP [P, wherep = Xiv1 - X
is the body part. The change of the joint coordinates and
angles can well capture the human body movements. So
The unsupervised action-topic assignments of action-we extract the motion features and off-set features [42] by
words are challenging because there is no annotations durcomputing their Euclidean distand@$; ) to previous frame
ing the training stage. BeS|des_ extracting rich v_|sual fga- fX. 1;fcc 1 andthe rstframe X;;f ., inthe clip:
tu_res, we well consu_jer the relations between action-topics. £X = DX xC 1)9_251 S f. ,=fD( & © 1)9_231 ;
Different from previous works, our model can capture © b : e b :
long-range relations between actioagy, put-milk-back-  fa1 = FD(X{ix)g2; fer = ID( 5 D -
to-fridge is strongly related tdetch-milk-from-fridgewith Then we concatenate dlf, ;;f.. 1:f&q:fq asthe hu-
pouring and drinking between them. We model all pair- man features of the clip.
wise co-occurrence and temporal casual relations between We also extract the human interactive objects based on
occurring action-topics in the video, using a new probabilis- the human hands, motion detection and edge detection. The
tic model (introduced in Sectiqr] 4). Speci cally, we use a interactive objects can help discriminate the different hu-
joint distribution as the correlated topic priors. They esti- man actions with similar body motions suchfatch-book
mate which actions are most likely to co-occur in a video. andturn-on-monitor To detect the interactive objects, rst
And we use a relative time distributions of topics to capture we segment each frame into super-pixels using a fast edge
the temporal causal relations. They estimate the possibledetection approach|[8] on both RGB and depth images. The
temporal ordering of the occurring actions in the video. image segmentation provides richer candidate super-pixels



Table 1:Notations in our model.
Symbols Meaning

D number of videos in the training database;

K number of action-topics;

Ng number of words in a video;

Wng n-th word ind-th document;

Znd topic-word assignment afq ;

thda the normalized timestamp of @f,q ;

tmnd =tmg tng the relative time between,q andwyg ;
-d the probabilities of topics id-th document;

\ the priors of .4 in d-th document;
K the multinomial distribution of the word from toplc

; the mutivariate normal distribution efy;
K the relative time distribution df\hg , between topidk; | ;

Figure 4: The graphic model of LDA (left) and our model (right).

rather than pixels to further extracting objects. Second we
use a moving targets detection approach [28] to detecting Figure 5: Notations in a video.
foreground mask by removing the unnecessary steady back- . : .
. : : : . Basic generative process.In a documend, the topic
grounds. Third we consider the interactive objects should ___ ; . e
. assignment,y is chosen from a multinomial distribution
be close to tracked human hands. Combining above three )
. .. with parameter .4, Zgn Mult ( .g4), where .4 is sam-
facts, we extract features from the image segments with . ; .
) o . pled from a prior. And the wordi,4 is generated by a topic-
more than50% in the foreground mask and within a dis- speci ¢ multinomial distribution W Mult ( )
tance to the human hand joints in both 3D points and 2D P Zng 2 TN Zan /o

: o ) where Dir ( ) is the word distribution of topid,
pixels (see examples in Fig. 3). Then we extract six ker- . . .
. . ) . sampled from a Dirichlet prior with the hyperparameter
nel descriptors from these image segments: gradient, color, . . ) . .
Topic correlations. First we consider correlations be-

local binary pattern, depth gradient, spin, surface norrnals’tween topics to model the probabilities of co-occurrence of
and KPCA/self-similarity, which have been proven to be . P Probe . .
actions. Let 4 be rghe probability of topidk occurring in

useful features for RGB-D scene labeling [41]. We con- documentd, where Eﬂ w = 1. Instead of sampling

catenate the human features and the object features as th? o - . .
. It from a x Dirichlet prior with parameter in LDA, we
nal feature vector of a clip.

construct the probabilities by a stick-breaking process:

4. Learning Model K1 L
In order to incorporate the aforementioned properties of  kd = ( Vkd) (Vid); ((Vkd) = /o7 ——
A . ; 1+exp( Vkd)
activities for patching, we present a new generative model 1=1

(see the graphic model in Fig. 4-right and the notations in whereO < ( vkq) < lis a classic logistic function, which
Fig. 5 and Table 1). The novelty of our model is the ability satises( Vkg) =1 ( Vkg), @andvgq serves as the prior
to infer the probability of forgotten actions in a complex of yq. The vectow.q4 in a video are drawn from a mutivari-

activity video. ate normal distributiofN (; ) , which captures the corre-
Consider a collection oD videos (documents in the lations between topics. In practicgy = [Vig; TVK 1:d]
topic model). Each video consists dfy action-words is a truncatg;i vector foKQ 1 topics, then we can set
N g . .. . _ K 1 _ K 1
fwna 0,2, mapped to the action-dictionary. Considera- Kd = k=1 kd = =1 ( Vkg) as the proba-
tent action-topicszng is the topic assignment of each word, bility of the nal topic for a valid distribution of .4.
indicating which action-topic the action-wowg,qy belongs Relative time distributions. Second we model the rel-

to in the video. Then continuous action-words with the ative time of occurring actions by taking their time stamps

same topic in a video consist an action segment, and thento account. We consider that the relative time between

segments assigned with the same topic from different videostwo words are drawn from a certain distribution according

consist an action-topic segment cluster. to their topic assignments. In detall, Igt;tmg 2 (0;1)
The topic model such as LDA [6] has been very common be the absolute time stamp ofth word andm-th word,

for document modeling from language (see graphic modelwhich is normalized by the video lengttigng = tmg  thd

in Fig. 4-left), which generates a document using a mixture is the relative time ofm-th word relative ton-th word (the

of topics. To model human actions in the video, our model green line in Fig. 5). Thehynng is drawn from a certain

introduces co-occurrence and temporal structure of topicsdistribution, tyng (' zmg zog )» Where ,_. ., are the

instead of the topic independency assumption in LDA. parameters.( ;) areK 2 pairwise topic-speci c relative



distribution ofz,q :
P(Znd = Kj :d:Z nditnd) ! ka! (KiWna)pP(tndjza; );

N nd +
1 (k: - kw . 2
( 1Wﬂd) and + N ’ ( )
p(tndjzid; ) = ( tmndj Zmd ;k) ( tnmdj K;Z md );
m

Figure 6: The relative time distributions learned by our model on whereN is the number of unique word types in dictionary,

training set (the blue dashed line) and the ground-truth histogrameW“d denotes the number of instances of wovgy as-

of the relative time over the whole dataset (the green solid line).  signed with topidk, excludingn-th word ind-th document,
andN, " denotes the number of total words assigned with

time distributions de ned as follows: topick. z ¢ denotes the topic assignments for all words
. . N( if t O excepizng .
()= B N(U i) N Note that, in Eq. (2), kg is the topic prior generated

1 ba N(U ) T 1<0 by a joint distribution giving which actions are more likely
An illustration of the learned relative time distributions 0 co-occur in the video.! (k;wnq) is the word distri-
are shown in Fig. 6. We can see that the distributions we Pution for topick giving which topic the word is more
learned can correctly re ect the order of the actioas, likely from. And p(tnajz.q; ) is the time distribution giv-
put-back-to-fridgeis afterpouringand can be before/after ing which topic-assignment of the word is more causally
microwaving and the shape is mostly similar to the real dis- Consistent to other topic-assignments.

tributions. Here the Bernoulli distributidm, =1 b, gives Due to the logistic stick-breaking transformation, the
the probability of actiork after/before the actioh And posterior distribution of.q does not have a closed form. So
two independent normal distributiomé(tj ;;| =N ) we instead use a Metropolis-Hastings independence sam-

estimate how long the actidnis after/before the actiott. pler [11]. Let the proposalg(v.4jv:a; ; ) = N(vgj; )
Then the order and the length of the actions will be capturedP€ drawn from the prior. The proposal is accepted with
by all these pairwise relative time distributions. probabilitymin(A(v.q; v:a); 1), where

p(vzdj; ) hnM=dl p(zndjv;d)Q(V:djV;d; 7))
| o _ PVl i ) my P(ZnajVea)AV.giVeai 5 )
Gibbs sampling is commonly used as a means of statis-
tical inference to approximate the distributions of variables _ Y P(ZndjV.q) - ¥ (ﬂ)P N9 (Zog k).
when direct sampling is dif cult [5, 16]. Given a video, - P(Zng jV-q) o kd '
the wordw,q and the relative timé,nq are observed. In
the training stage, given a set of training videos, we use
Gibbs sampling to approximately sample other hidden vari-
ables from the posterior distribution of our model. Since
we adopt conjugate pridDir ( ) for the multinomial dis-
tributions , we can easily integrate out; and need not
to sample them. For simplicity and ef ciency, we estimate
the standard distributions including the mutivariate normal
distributionN (; ) and the time distributior( ) bythe  5.1. Action Segmentation and Recognition
method of moments, once per iteration of Gibbs sampling.  After we learn the topic-assignment of each action-word,
And as in many applications using the topic model, we use we can easily get the action segments by merging the con-
xed symmetric Dirichlet distributions by setting = 0:01. tinuous clips with the same assigned topic. Also the as-
In the Gibbs sampling updates, then we need to samplesigned topic of the segment indicate which action it is and
the topic assignmenmt,y and the topic priow.q. We cando  these segments with the same assigned topic consist an
a collapsed sampling as in LDA by calculating the posterior action-topic segment cluster.

- , 5.2. Action Patching
1specially, wherk = |, If two words are in the same segments, we . L .
drawt from a normal distribution which is centered on zero, and the vari- We also apply our model in a new signi cant applica-
ance models the length of the action. If not, it also follows Eq. (1) indi- tion, calledaction patching It reminds people of forgot-

cating the relative time between two same actions. We also use functionsten actions by output a seament containing the forgotten ac-
tan( =2+ t)(0<t< 1);tan( =2+ t)( 1<t< O0)tofeedtto . y p g. . .g g
the normal distribution so that the probability is valid, that summits to one tion from the training set (illustrated in Fig. 7). Itis more

through the domain df. challenging than conventional similarity search, since the

5. Gibbs Sampling for Learning and Inference  A(v.4;Vv.q) =

which can be easily calculated by counting the number of
words assigned with each topic kyy. Here the function
(x;y) =1 ifonlyif x = y, otherwise equal t6. The time
complexity of the sampling per iteration@(N 7KD ).
Given a test video, we x all parameters learned in the
training stage and only sample the topic assignments
and the topic priors.q.




Figure 7: lllustration of action patching using our model.
Given a test video, we infer the forgotten topic from all miss-
ing topics in each segmentation point;t. as above) using the

learned co-occurrence and temporal relations of the topics. Thenthreshold or there is no missing topi@se:; K ¢

their frame-wise distances. In detail, we consider that the
front and the tail of the patching segmen ; f,; should

be similar to the tail of the adjacent segmentjiheforets

and the front of the adjacent segmenutjiafterts: fq¢; fqr .

At the same time, the middle of the patching segnignt
should be different tdy; f 41 , as it is a different action for-
gotten in the vided. So we choose the patching segment
with the maximum scoreave(D(f pm ; f g ); D(fpm s T qt))

max (D(f pr ;T qt); D(f ot T gr ), whereD(;) is the average
pairwise distances between framasge(; ); max(;) are the
average and max value. If the maximum score is below a
[1:K]

we select the top segment from the inferred action-topic's segmentin the query video, we claim there is no forgotten actions.

cluster by ranking them using a frame-wise similarity score.

retrieved target is not shown in the query video. Therefore,

6. Experiments
6.1. Dataset

learning the action co-occurrence and the temporal relations

is important in this application.

Different from existing models on action relations learn-
ing, our model learns all the pairwise relations rather than
only the local and the past-to-future transitions. This is very

useful to patching, since those actions occurred with a rela-

tively large time interval with or actions occurred after the
forgotten actions are also helpful to detectdtgy, a put-
back-bookmight be forgotten as previously seerfedch-
bookaction before a longeading and seen Beavingaction
indicates he really forgot tput-back-book

Our model infers the forgotten action using the probabil-
ity inference based on the dependencies. After assigning th
topics to the action-words of a query vidgpwe consider
adding one additional action-wow into the video in each
segmentation poirtt;. Then the probabilities of the miss-
ing topicsky, in each segmentation point can be compared
following the posterior distribution in Eq. (2):X

P(zo = Km;tw = tsjother) /'« ap(tsjzza; ) ! (Kmw);

sitt ts2 Ts; km 2 [1:K] Kg;

whereTs is the set of segmentation pointsg;(t in Fig. 7)
and K. is the set of existing topics in the videfe{ch-
booketc in Fig. 7). Thus[1:K] K. are the miss-
ing topics in the video tirn-off-monitoretc in Fig. 7).
p(tsjz.q; );! (km;w) can be computed as in Eq. (2). Here
we marginized# to avoid the effect of a speci ¢ action-
word. Note that, g gives the probability of a missing
topic in the video decided by the correlation we learned in
the joint distribution priorj.e., the close topics have higher
probabilities to occur in this query video. Amdtsjz.q; )
measures the casual consistency of adding a new topic.
Then we rank the paitkm ;ts) using the above score

We collect a new challenging RGB-D activity dataset
recorded by the new Kinect v2 camétaEach video in the
dataset contain 7 actions interacted with different objects
(see examples in Fig. 8). The new Kinect v2 has higher
resolution of RGB-D frames (RGBt920 1080 depth:
512 424 and improved body tracking of human skele-
tons @5 body joints). We recordl58 videos with a total
length of abou230 minutes. We ask subjects to perform
human daily activities i8 of ces and5 kitchens with com-
plex backgrounds. And in each environment the activities
are recorded in different views. It composed of fully anno-
etated21types of actions¥0in the of ce, 11in the kitchen)
interacted with23 types of objects. We also record the au-
dio, though it is not used in this paper.

In order to get a variation in activities, we ask patrtici-
pants to nish task with different combinations of actions
and ordering naturally. Some actions occur together often
such agetch-from-fridgeandput-back-to-fridgevhile some
are not always in the same video (see more examples on our
website). Some actions are in x ordering suchfagh-
bookandput-back-bookvhile some occur in random order.
Moreover, to evaluate the action patching performagge,
videos in the dataset has action forgotten by people natu-
rally and the forgotten actions are annotated.

6.2. Experimental Setting and Compared Baselines

We evaluate in two environments “of ce' and “kitchen'.
In each environment, we split the data into a train set with
most full videos (of ce: 87, kitchen119) and a few for-
gotten videos (of ce:10, kitchen10), and a test set with a
few full videos (of ce: 10, kitchen20) and most forgotten
videos (of ce: 89, kitchen113). We compare seven unsu-
pervised approaches in our experiments. They are Hidden

and select the top ones (three in the experiments)_ The seg- 2Here the middle, front, tail frames aP@%-length of segment center-

ments with the selected topi&s, in the training set con-

sist a candidate patching segment set. Finally, we select

the top one from the candidates to output by comparing

ing on the middle frame, starting from the rst frame, and ending at the
|ast frame in the segment respectively.

3The dataset and tools are releasehit://watchnpatch.cs.

cornell.edu



to get the best mapping:

max  XicMic;
X

k;c

(a) turn-off-monitor (b) take-item X X
sit: 8k; Xke =1; 8c; Xke 1, Xk 210;1g;

c k

wherexy. = 1 indicgtes mapping topik to classc, other-
(©) fetch-from-Fridge (@ I-kete wiseXge = 0. And X =1 cgestrain that each to_plc
Figure 8: Action examples in our dataset. The left is RGB frame Must be mapped to exact one class, Xic 1 constrain
and the right is depth frame with human skeleton (yellow). The that each class must be mapped by at least one topic.
full action classes are shown on our website. We then measure the performance in two ways. Per

. frame: we computérame-wise accuracy (Frame-Acdhe
Markov Model (HMM), t.Op'C model LDA (TM), colrrelated ratio of correctly labeled frames. Segmentation: we con-
topic model (CTM), topic model over absolute time (TM-

g . sider a true positive if the overlap (union/intersection) be-
AT).’ correlated topic r_nod_el aver absolute time (CTM'AT).' tween the detected and the ground-truth segments is more
topic model over relative time (TM-RT) and our causal topic

) . h fault thresholdi0% as in [27]. Th
model (CaTM), that is the correlated topic model over rel- than a default threshold0%as in [27] en we compute

o segmentation accuracy (Seg-Acttje ratio of the ground-
ative time. All these methods use the same human skele-

. . . truth segments that are correctly detected, sagimenta-
ton and RGB-D features introduced in Section 3.1. We 9 y

. tion average precision (Seg-ABy sorting all action seg-
also evaluate HMM_and our m_qdel cat™ using th? POP~ ments output by the approach using the average probability
ular features for action recognition, dense trajectories fea-

. ) of their words' topic assignments. All above three metrics
ture (DTF) [38], extracted only in RGB videbshamed as . .
HMM-DTE and CaTM-DTE. are computed by taking the average of each action class.

. . We also evaluate thpatching accuracy (P-Acd)y the
In the experiments, we set the number of tqplcs (Statesportion of correct patchped vide%, includir?g(corregl);/ output
Ig];t'c'\:/cl)l\r/ge f;(ggltf ?é mg:ﬁ;zavr:/grt?:en?r;gl;t:r:gt{gni(élafifﬁsih the forgotten action segments or correctly claiming no for-
our model. For rr?odels over’ absolute time, we copnsiger thegOtten ac_tions. we pqnsider the output action segments by
absolute ti.me of each word is drawn from, a topic-speci c the' algorithm containing oves0% ground-trgth forgotten
o L actions as correctly output the forgotten action segments.
normal distribution. For models over relative time, we use

the same relative time distribution as in our model (Eq. (1)). 6.4. Results

The clip length of the action-words is set B frames, Table 2 and Fig. 9 show the main results of our exper-
densely sampled by step one and the size of action dic-iments. We rst perform evaluation in the of ine setting
tionary is set ta500. For patching, the candidate set for to see if actions can be well segmented and clustered in
different approaches consist of the segments with the in-the train set. We then perform testing in an online setting
ferred missing topics by transition probabilities for HMM, to see if the new video from the test set can be correctly
the topic priors for TM and CTM, and both the topic pri- segmented and the segments can be correctly assigned to
ors and the time distributions for TM-AT, TM-RT, CTM-AT  the action cluster. We can see that our approach performs
and our CaTM. Then we use the same ranking score as irpetter than the state-of-the-art in unsupervised action seg-
Section 5.2 to select the top one patched segments. mentation and recognition, as well as action patching. We
6.3. Evaluation Metrics discuss our results in the light of the following questions.

We want to evaluate if the unsupervised learned action-  Did modeling the long-range relations helpAVe stud-
topics (states for HMM) are semantically meaningful. We 1€d whether modeling the correlations and the temporal re-
rst map the assigned topics to the ground-truth labels for lations between topics was useful. The approaches consid-
evaluation. This could be done by counting the mapped €fing the temporal relations, HMM, TM-RT, and our CaTM,
frames between topics and ground-truth classes kL&t outperform other approaches which assume actions are tem-

be the assigned topic and groupd-truth class of frame tporal in(ieriencient._ Thi_st_ delnsonstrates_ that un(;jersttag_ding
he count of a mapping isnye = —e®iK) (G0 \pare emporal structure is critical to recognizing and patching
oK) (G- 'pphg kcb  fra (cie) dwith 2ctions. The approaches, TM-RT and CaTM, which model

i (k" ) éc. ) Is ; € nﬁml ero drames a§S|gn§ \rlw\”t both the short-range and the long-range relations perform
topic k as the ground-truth classan normeﬁlze Y e petter than HMM only modeling local relations. Also, the

number of frames as the grqund-_truth glass i (G50). . approaches considering the topic correlations CTM, CTM-
Then we can solve the following binary linear programming AT, and our CaTM perform better than the corresponding

4We train a codebook with the size 8000 and encode the extracted non-correlgted tOpi_C models TM, TM'AT' and TMTRT- Qur
DTF features in each clip as the bag of features using the codebook. CaTM, which considers both the action correlation priors




Table 2: Results using the same number of topics as the ground-
truth action classes. HMM-DTF, CaTM-DTF use DTF RGB fea-
tures and others use our human skeleton and RGB-D features.

“of ce' Seg-Acc Seg-AP Frame-Acc  P-Acc
(%) Ofine Online Ofine Online Ofine Online

HMM-DTF| 15.2 9.4 214 207 20.2 159 236
HMM 18.0 140 259 248 247 21.3 333
™ 9.3 9.2 20.9 196 203 13.0 133
CT™ 10.0 5.9 18.1 158  20.2 16.4 133
TM-AT 8.9 3.7 254 19.0 18.6 13.8 120
CTM-AT 9.6 6.8 253 1938 19.6 155 108
TM-RT 308 309 290 302 381 364 395
CaTM-DTH 28.2 27.0 283 274 374 340 337
CaTM 306 329 331 346 399 385 415

“kitchen' Seg-Acc Seg-AP Frame-Acc  P-Acc
(%) Ofine Online Ofine Online Ofine Online

HMM-DTF| 4.9 3.6 18.8 5.6 12.3 9.8 2.3
HMM 20.3 15.2 20.7 13.8 21.0 18.3 7.4
™ 7.9 4.7 215 14.7 20.9 11.5 9.6
CT™ 10.5 9.2 20.5 14.9 18.9 15.7 6.4
TM-AT 8.0 4.8 215 21.6 20.9 14.0 7.4
CTM-AT 9.7 10.0 19.1 22.6 20.1 16.7 10.7
TM-RT 32.3 26.9 234  23.0 350 312 183
CaTM-DTH 26.9 23.6 18.4 17.4 33.3 299 165
CaTM 33.2 29.0 264 255 375 340 205

Figure 10: Visualization of the learned topics using our model.

For better illustration, we decompose the segments with the same
topic into different modes (shown two) and divide a segment into
three stages in time. The clips from different segments in the same
stage are merged by scaling to the similar size of human skeletons.

HMM-DTF in Table 2). Clearly, the proposed human skele-

ton and RGB-D features outperform the DTF features as

more accurate human motion and object are extracted.

How well did our new application of action patch-

ing performs? From Table 2, we nd that the approaches

learning the action relations mostly give better patching per-
Figure 9: Online segmentation Acc/AP varied with the number of t5:mance. This is because the learned co-occurrence and
topics in “of ce' dataset. temporal structure strongly help indicate which actions are

and the temporal relations, shows the best performance. forgotten. Our model capturing both the short-range and

How successful was our unsupervised approach in long-range action relations shows the best results.
learning meaningful action-topics?From Table 2, we can  6.5. Sharing the Learned Topics
see that the unsupervised learned action-topics can be se- Inorder to make our learned knowledge useful to robots,
mantically meaningful even though ground-truth semantic We also share the learned topics to RoboBrain [30], a large-
labels are not provided in the training. In order to qualita- scale knowledge engine for robots. Our learned action top-
tively estimate the performance, we give a visualization of ics are represented as nodes in the knowledge graph for
our learned topics in Fig. 10. It shows that the actions with robots and these nodes are connected with edges of our
the same semantic meaning are clustered together thouglearned co-occurrence and temporal relations.
they are in different views and motions. In addition to the 7. Conclusion
one-to-one correspondence between topics and semantic ac- |n this paper, we presented an algorithm that models the
tion classes, we also plot the performance curves variedhuman activities in a completely unsupervised setting. We
with the topic number in Fig. 9. It shows that if we set the showed that it is important to model the long-range relations
topics a bit more than ground-truth classes, the performancepetween the actions. To achieve this, we considered the
increases since a certain action might be divided into mul- video as a sequence of action-words, and an activity as a set
tiple action-topics. But as topics increase, more variations of action-topics. Then we modeled the word-topic distribu-
are also introduced so that performance saturates. tions, the topic correlations and the topic relative time dis-

RGB videos vs. RGB-D videos.In order to compare tributions. We then showed the effectiveness of our model
the effect of using information from RGB-D videos, we inthe unsupervised action segmentation and recognition, as
also evaluate our model CaTM and HMM using the pop- well as the action patching. For evaluation, we also con-
ular RGB features for action recognition (CaTM-DTF and tributed a new challenging RGB-D activity video dataset.
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